Education
Ph.D., Computer Engineering (System Modeling and Analysis), Annaba/UCL University, Algeria/Belgium
Bs.c., Computer Engineering (System Modeling and Analysis), Annaba University, Algeria
Bachelor (Engineer), Computer Engineering, Annaba University, Algeria
Research Interests
Multi-Agents Testing, System Modeling and Analysis, Fault Detection and Isolation, Formal Methods, Petri nets Modeling and applications, Fuzzy logic Modeling and applications, Big Data.
Selected Publications
- Tabash, M. I., Farooq, U., El Refae, G. A., Al-Faryan, M. A. S., & Athamena, B. (2023). Impact of religious tourism on the economic development, energy consumption and environmental degradation: evidence from the Kingdom of Saudi Arabia. Tourism Review, 78(3), 1004-1018.
- Houhamdi, Z., Athamena, B., & ElRefae, G. (2023). Smart Contracts and Blockchain-Based Tools for Privacy-Preservation. In Conference on Sustainability and Cutting-Edge Business Technologies (pp. 83-93). Cham: Springer Nature Switzerland.
- Athamena, B., Houhamdi, Z., & ElRefae, G. A. (2023). Retention contracts with asymmetric information: optimistic approach vs pessimistic approach. Journal of Financial Reporting and Accounting, 21(1), 156-177.
- Houhamdi, Z., Athamena, B., & El Refae, G. (2022). Retention Contracts under Partial Information Electoral Competition Case Study. International Arab Journal of Information Technology, 19(3 A), 491-500.
- Athamena, B., & Houhamdi, Z. (2022). Formal Approach to Data Accuracy Evaluation. Informatica, 46(2), 243-258.
- Houhamdi, Z., & Athamena, B. (2021). Multi-agents collaboration in open system. International Arab Journal of Information Technology, 18(3A), 393-404.
- Athamena, B., Houhamdi, Z., & Refae, G. A. E. (2020). Managing asymmetric information effects in decision-making: task complexity-based model. International Journal of Quality Engineering and Technology, 8(1), 52-76.
- Houhamdi Z. & Athamena B. (2020). Identity Identification and Management in the Internet of Things. International Arab Journal of Information Technology, 17(4A), 645-654.
- Houhamdi, Z., Athamena, B., & El Refae, G. (2020). Managing Asymmetric Information Effects in Decision-Making Productivity-Based Model. International Journal of Knowledge and Systems Science (IJKSS), 11(2), 86-107.
- Houhamdi, Z., Athamena, B., Abuzaineddin, R., & Muhairat, M. (2019). A Multi-Agent System for Course Timetable Generation. TEM Journal, 8(1), 211.
- Houhamdi, Z., & Athamena, B. (2019). Impacts of information quality on decision-making. Global Business and Economics Review, 21(1), 26-42.
- Athamena B. & Houhamdi Z. (2018). Model for Decision-Making Process with Big Data. Journal of Theoretical & Applied Information Technology, 96(17).
- Athamena B. & Houhamdi Z. (2017). An Exception Management Model in Multi-Agents Systems. Journal of Computer Science, 13(5), 140-152.
- Mazouz A. & Athamena B. (2016). Quality Management Process Optimization. International Business Management, 10(28), 6462-6469.
- Houhamdi, Z., & Athamena, B. (2016). Data freshness evaluation in data integration systems. International Journal of Economics and Business Research, 11(2), 132-144.
- Athamena B. & Houhamdi Z. (2015). A Distributed Approach for Monitoring and Diagnosis of Multi-Agent Plan. IEEE - SAI Intelligent Systems Conference (IntelliSys), November 10-11, 2015, London, UK, 863-870.
- Laamari, Y., Chafaa, K., & Athamena, B. (2015). Particle swarm optimization of an extended Kalman filter for speed and rotor flux estimation of an induction motor drive. Electrical Engineering, 97(2), 129-138.
- Houhamdi Z. & Athamena B. (2015). Ontology-based Knowledge Management. International Journal of Engineering and Technology, 7(1), 51-62.
- Houhamdi Z. & Athamena B. (2015). Information Quality Framework. Global Business & Economics Anthology, I, 181-19.
Teaching Courses
Undergraduate: Database Management Systems, Project Management, Business System Analysis and Applications, Mathematics for Business, Business Data Communication, E-Commerce, Quality Management, Production and Operations Management, Introduction to Programming Languages, Introduction to Software Engineering, Human-Computer Interaction, Software Modeling and Analysis.
Graduate: System Analysis and Design, System/Software Verification, Validation and Testing, System Modeling using Fuzzy logic and neural network.
Expertise related to UN Sustainable Development Goals
In 2015, UN member states agreed to 17 global Sustainable Development Goals (SDGs) to end poverty, protect the planet and ensure prosperity for all.
This person’s work contributes towards the following SDG(s):
Memberships
Signal Processing and Automatic Control Laboratory, Annaba University, Algeria
Energetic Systems Modeling Laboratory, Biskra University, Algeria.
Smart Contracts and Blockchain-Based Tools for Privacy-Preservation
Published in: Studies in Big Data
Sep 01, 2023
This research paper aims to investigate smart contracts and Blockchain technology to build a privacy-sensitive application focusing on a Digital Medication Plan (DMR) containing prescriptions. The DMR is used just as a use case. However, the proposed model applies to any context where confidential information is shared and authentication or proof of validity is necessary. We start by presenting the problem to understand the necessity of digitalizing the medication plans and how Blockchain technology fits to implement this application. After that, we explain Blockchain technology, a recent and comparatively unknown IT solution. Later we propose a design to solve the problem, and we develop a System of Smart Contracts to demonstrate how to build similar applications and suggest policies for Blockchain system design to satisfy the defined requirements. Eventually, we discuss the pertinence of multiple Blockchain solutions in handling the privacy problem. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
Impact of religious tourism on the economic development, energy consumption and environmental degradation: evidence from the Kingdom of Saudi Arabia
Published in: Tourism Review
Mar 01, 2023
Purpose: Saudi Arabia is the main destination of religious tourism, as it has many spiritual places. With the passage of years, the figures for pilgrim visits are increasing, which is contributing to the economic growth of the Kingdom of Saudi Arabia (KSA). However, pilgrims’ visits can create strong opportunity costs in the form of environmental degradation. Owing to these notions, this study aims to discover the impact of religious tourism on the quality of the natural environment of Saudi Arabia. Design/methodology/approach: This study develops the empirical relationship between the variables by sampling the data from 35 years ranging from 1986 to 2020. The regression among variables was checked by using fully modified ordinary least square and dynamic ordinary least square models. Findings: This analysis proves that religious tourism has a direct impact on the environmental degradation of KSA. The unceasing visits of pilgrims accelerate various economic operations and activities, e.g. assimilation and digestion of industrial products, that necessarily hamper the environmental quality. In addition, this analysis indicates a negative impact on financial development, foreign investment and renewable energy consumption while the positive impact of fossil fuels assimilation and economic expansion on the secretion of CO2. The statistical findings are robust and verify the pollution halo hypothesis while rejecting the Environmental Kuznets Curve model in this region. Research limitations/implications: This analysis recommends restructuring the policies on hajj and Umrah visits. KSA Government should ensure green consumption by pilgrims. The limitation on pilgrims’ visits and the introduction of quotas are alternative policies to impede the pollution in this region. Originality/value: By controlling the routine determinants, this study offers innovative thoughts regarding the consequences of religious tourism on environmental quality.
Retention contracts with asymmetric information: optimistic approach vs pessimistic approach
Published in: Journal of Financial Reporting and Accounting
Jan 01, 2023
Purpose: This paper aims to focus on the utilization of retention contracts to screen and discipline managers in a context in which the council, board of directors, possesses incomplete information about the consequences of managers’ decisions. The analysis enlightens us on empire building, on the slight connection between achievement and firing, and describes concerns about the belief that low achievements result from bad managers. Design/methodology/approach: This paper analyzes a basic model to show the resulting dilemmas. The desire to screen managers to enhance the organization's future well-being motivates managers to show their credentials by becoming excessively active. The council can address this bias by firing a manager whose project is proven to ruin value. Moreover, the council can replace the manager if he has implemented a project but its outcomes remain unobservable. Both decisions decrease the attraction to develop loss-generating projects. However, the dismissing decision on either ground will affect the council deduction that the expected competence of the incoming manager is lower than that of the dismissed manager. Findings: This study shows in which situation the selection option is preferred over the disciplining option using two different retention contracts: optimistic contract and pessimistic contract. Originality/value: This study shows in which situation the selection option is preferred over the disciplining option using two different retention contracts: optimistic contract and pessimistic contract.
Retention Contracts under Partial Information Electoral Competition Case Study
Published in: International Arab Journal of Information Technology
Aug 01, 2022
This study copes with a class of principal-agent problems where information asymmetry represents an important characteristic. The paper examines the relationship between the principal and agents. The principal has to perform two agents’ screening and discipline tasks. To complete his duties, the principal lacks complete information concerning the agents’ behavior and rarely has partial information regarding the failure or success of launched tactics, alliances, rationalization, etc. We analyze the type of retention contracts (implicit) used by the principal to replace or retain agents. Consistent with literature findings, we demonstrated that agents could be extremely active in showing their competencies; the relationship between dismissal and bad performance is invalid; and occasionally, the principal dismisses qualified agents. Then we determined the rules under which electorates urge political parties to acquire information and choose optimal policies from the voter’s viewpoint.
Formal Approach to Data Accuracy Evaluation
Published in: Informatica
Jun 01, 2022
Usually, data quality is defined by multiple attributes that allow classifying the output data (such as completeness, freshness, and accuracy) or the methods exploiting these data (such as dependability, performance, and protection). Among the suggested quality attributes, we will discuss one of the principal categories: data accuracy. Scientific experiments, decision–making, and data retrieval are examples of situations that require a formal evaluation approach to data accuracy. The evaluation approach should be adaptable to distinct understandings of data accuracy and distinct end-user expectations. This study investigates data accuracy and defines dimensions and metrics that affect its evaluation. The investigation of data accuracy generates problems in the user expectation specification and database quality models. This work describes our proposed approach for data accuracy evaluation by defining an evaluation algorithm that considers the distribution of inaccuracies in database relations. The approach decomposes the query output in accordance with data accuracy, labels every part with its accuracy value, and addresses the possibility of enforcing data accuracy by using these values. This study mainly contributes by proposing an explicit evaluation of quality attributes of data accuracy, a formal evaluation approach to data accuracy, and suggesting some improvement actions to reinforce data accuracy. © 2022 Slovene Society Informatika. All rights reserved.
Multi-agents collaboration in open system
Published in: International Arab Journal of Information Technology
Dec 01, 2021
Share constrained resources, accomplish complex tasks and achieve shared or individual goals are examples requiring collaboration between agents in multi-agent systems. The collaboration necessitates an effective team composed of a set of agents that do not have conflicting goals and express their willingness to cooperate. In such a team, the complex task is split into simple tasks, and each agent performs its assigned task to contribute to the fulfilment of the complex task. Nevertheless, team formation is challenging, especially in an open system that consists of self-interested agents performing tasks to achieve several simultaneous goals, usually clashing, by sharing constrained resources. The clashing goals obstruct the collaboration's success since the self-interested agent prefers its individual goals to the team’s shared goal. In open systems, the collaboration team construction process is impacted by the Multi-Agent System (MAS) model, the collaboration’s target, and dependencies between agents’ goals. This study investigates how to allow agents to build collaborative teams to realize a set of goals concurrently in open systems with constrained resources. This paper proposes a fully distributed approach to model the Collaborative Team Construction Model (CTCM). CTCM modifies the social reasoning model to allow agents to achieve their individual and shared goals concurrently by sharing resources in an open MAS by constructing collaborative teams. Each agent shares partial information (to preserve privacy) and models its goal relationships. The proposed team construction approach supports a distributed decision-making process. In CTCM, the agent adapts its self-interest level and adjusts its willingness to form an effective collaborative team. © 2021, Zarka Private University. All rights reserved.
Managing asymmetric information effects in decision making: Task complexity-based model
Published in: International Journal of Quality Engineering and Technology
Oct 01, 2020
This paper proposes a formal model to manage the impact of asymmetric information in decision-making by using principal-agent problems in which an agent (who has incomplete information) must decide to perform or not perform a task on behalf of the principal. After performing a complex (simple) task, the agent underrates (overrates) his competence. As a consequence of underestimation, a competent agent may decide to stop performing the task henceforth. The agent infers his competence from his productivity on a performed task. However, the productivity depends on both the agent's competence and the task complexity. To avoid this situation, the company appoints a mentor (fully informed superior agent) who can determine the task complexity and assess the agent's competence. Accordingly, the mentor matches the task complexity perfectly with the agent's competence. In cases where the mentor and the junior have different preferences, the mentor may not confess all information to the agent. Nevertheless, the mentor desires the agent to fulfill the task. This paper proposes a solution for all of these situations by using a mathematical model. The model assesses the agent's competence based on his productivity and the mentor's appraisal and assists the agent in making the right decision.
Identity Identification and Management in the Internet of Things
Published in: International Arab Journal of Information Technology
Aug 01, 2020
Henceforth, users agreed on the necessity of continuous Internet connection independently of the place, the manner, and the time. Nowadays, several elite services are accessible by people over the Internet of Things (IoT), which is a heterogeneous network defined by machine-to-machine communication. Despite the fact that the devices are used to establish the communication, the users can be considered as the actual producers of input data and consumers of the output data. Consequently, the users should be viewed as a smart object in IoT; therefore, user identification, authentication, authorization are required. However, the user identification process is too complicated because the users are worried to share their confidential and private data. on the other hand, this private data should be used by some of their devices. Accordingly, an equitable mechanism to identify users and manage their identities is necessary. In addition, the user plays an extreme important role in the establishment of rules needed for identity identification and in ensuring the continuity of receptive services.The main purpose of this paper is to develop a new framework for Identity Management System (IdMS) for IoT. The primary contributions of this paper are: the proposition of a device recognition algorithm for user identification, the proposition of a new format for the identifier, and a theoretical framework for IdMS.
Identity Management System Model in the Internet of Things
Published in: TEM Journal
May 01, 2020
This paper describes the identity management system (IdMS) by defining system and user requirements. Additionally, it introduces the IdMS concept that approaches the things identity management. Moreover, the paper deeply describes the IdMS features using unified modelling language (UML) diagrams such as class, system, and sequence diagrams to show the main system functionalities. Ultimately, the suggested system is evaluated by comparing it with the existing systems and discussing the fulfilment of user and system requirements.
Managing Asymmetric Information Effects in Decision-Making Productivity-Based Model
Published in: International Journal of Knowledge and Systems Science
Apr 01, 2020
Making the correct decision requires the possession of sufficient information regarding each alternative possible solution. Nevertheless, the investigation of all possible solutions to select the best alternative is complex and expensive. This article addresses the Principal-Agent problem, where the key feature is asymmetric information. Asymmetric information approaches the decision investigations in a business context, where one participant possesses more or better information than the second party. The authors consider the case where the principal is more knowledgeable than the agent. The article proposes a formal model for assessing agent competence based on his productivity and the principal assessment. The model output helps the agent to make the correct decision.
A Multi-Agent System for Course Timetable Generation
Published in: TEM Journal
Mar 01, 2019
In the university, course scheduling and preparation for each semester can be defined as the process of determining what courses to offer, the number of sections needed for each course, assigning of a faculty member to teach each section, and allocating a timeslot and a classroom for each section to avoid clashes. The output of this activity (which is a timetable) affects every faculty member and student in various departments. This process is essentially broken down into three main stages: determining the courses to be offered as well as their section numbers, assigning faculty members to different sections, and scheduling of the sections into timeslots and classrooms.This paper investigates each of these steps and congregates them in a scheduling and Decision Support System (DSS). The DSS is used to make easy the process of course offerings by taking into consideration the students’ suggestions because the department resources are limited. The faculty member preferences are also considered in the assignment of sections for the sake of lessening disappointments in the department. Also, the couples (faculty, section) are planned into university timeslots based on faculty member preferences. Our proposed system considers student suggestions and preferences and the time availability of a faculty member since it minimizes disappointments and avoids conflicts between faculty members and classrooms and courses.
Impacts of information quality on decision-making
Published in: Global Business and Economics Review
Jan 01, 2019
Prior investigations have pointed out that an understanding of the impacts of information quality is essential to the organisation's success. Nevertheless, few investigations have analysed the impacts of information quality in a business context. This paper analyses the impacts of information quality on the decision-making process in a systematic way. To reach this goal, we suggest a pragmatic approach that allows estimation of information quality categories and dimensions. The results of the proposed approach indicate that intrinsic and contextual categories of information quality affect decision quality in a positive manner. On the other hand, decision quality is not necessarily influenced by representational category of the information quality. Additionally, the findings suggest that, contrary to consistency, increased information completeness and accuracy significantly improves the quality of the decision. Consequently, not all of the categories of information quality have the same effectiveness for the amelioration of decision quality.
An Exception Management Model in Multi-Agents Systems
Published in: Journal of Computer Science
Mar 01, 2017
Multi-Agents Systems (MAS) are modern approaches that need an additional investigation to improve their reliability and adaptability levels. Exception management is one way to reach this goal and this paper is dedicated to this specific subject. The purpose of this document is to examine the exception concept in MAS domain and to suggest a model adjusted to MAS challenges such as heterogeneity, openness and particularly agents' autonomy. Previous attempts in the agent's society have concluded set of findings that demonstrated the necessity of exception handling in MAS at the system level. The handling includes management and the needed processes related to management. The attainment up to now can be applied only to special MAS type. Usually, agents are non-autonomous and the system-level strategies need an impeccable cooperation between agents in the exception handling process. In our proposed model, the agent's ability to approach exceptions by itself is considered as a prerequisite to assure agent autonomy. Then, exception handling depends on agent-level processes to deal with the limitations of contemporary attainments and thus, they are complementary. Agent preserves the ability to independently decide when to activate exception handling and when to receive system-level help or believe in its skills.
Data freshness evaluation in data integration systems
Published in: International Journal of Economics and Business Research
Apr 01, 2016
The availability of data in different datasources increases highly the demand on accessing this data in a uniform and generalised way, especially in decision making applications which require an exhaustive investigation and examination of the data. The data quality represents an essential characteristic requested by the users, particularity with the arrival of the data integration systems (DIS) which integrate data from multiple datasources and present them to the users as single database. This paper discusses the data quality evaluation in DIS systems. Precisely, it addresses the issues of the quality evaluation of the data delivered to the end users as results to their queries and the verification of the achievement of users' quality expectations. Besides, it analyses how to improve the DIS systems by using quality scales and to enforce data quality. We propose to study one quality attribute, to analyse its effect in a DIS system, and to suggest methods for its assessment. Between the quality attributes that have been defined, this paper investigates the more significant one which is data freshness.
INFORMATION QUALITY FRAMEWORK
Published in: Global Business & Economics Anthology
Sep 01, 2015
This paper discusses a general, meaningful and repeated problem in information systems practice: under investment in the client information quality. Many organizations need precise financial models so as to initiate investments in their information systems and associated processes. Nevertheless, there are no broadly recognized strategies to accurately combining the expenses and profits of potential quality enhancement to client information. This can result in inadequate quality client information which influences the organizational goals. Further, the absence of such a strategy impedes the ability for Information System (IS) developers to discuss the investing case in betterments since the organizational resources access is dependent on such a case being made. To address this problem, we propose and assess a structure for generating financial models of the expenses and profits of client information quality. These models can be exploited to select and prioritize from various candidate interventions across multiple client processes and information resources, and to set up a business case for the society to make the investment. As the work tried to provide and evaluate an artifact instead of answer a question, design science was identified as the most suitable research approach. With design science, utility of a conceived artifact is precisely established as the goal rather than the theory truth. So instead of following a process of expressing and answering a sequence of research questions, design science develops by constructing and evaluating an artifact. In this case, the framework is built as an abstract artifact, incorporating models, measures and a method.
Particle swarm optimization of an extended Kalman filter for speed and rotor flux estimation of an induction motor drive
Published in: Electrical Engineering
Jun 01, 2015
A novel method based on a combination of the extended Kalman filter with particle swarm optimization (PSO) to estimate the speed and rotor flux of an induction motor drive is presented. The proposed method will be performed in two steps. As a first step, the covariance matrices of state noise and measurement noise will be optimized in an off-line manner by the PSO algorithm. As a second step, the optimal values of the above covariance matrices are injected in our speed–rotor flux estimation loop (on-line). Computer simulations of the speed and rotor flux estimation have been performed to investigate the effectiveness of the proposed method. Simulations and comparison with genetic algorithms show that the results are very encouraging and achieve good performances.
A Petri Net Based Multi-Agent System Behavioral Testing
Published in: Modern Applied Science
Mar 01, 2012
In Multi-Agent System (MAS), developers concentrate on creating design models and evolving them, from higher level models to lower level models, in several steps. Considerable part of MAS implementations is automatically produced from the design models. If a design model contains faults, they are passed to the generated implementations. Practical model validation techniques are required to discover and delete faults in abstract design models. In this paper, we introduce a formal approach for MAS design testing. It specifies a testing process that complements Multi-agent Systems Engineering (MaSE) methodology and strengthens the mutual relationship between UML and MAS. Besides, it defines a structured and comprehensive testing process for engineering software agents at the design level by providing a systematic way of converting the MAS design models to UML design diagram. Then a Petri Net (PN) diagram is generated from the UML models to simulate the behavior of the MAS system. Finally, because Petri Nets (PNs) are formal models, their analysis techniques can be applied to automatic MAS behavioral testing.
Structured Acceptance Test Suite Generation Process for Multi-Agent System
Published in: Computer and Information Science
Jan 01, 2012
In recent years, Agent-Oriented Software Engineering (AOSE) methodologies are proposed to develop complex distributed systems based upon the agent paradigm. The implementation for such systems has usually the form of Multi-Agent Systems (MAS). Testing of MAS is a challenging task because these systems are often programmed to be autonomous and deliberative, and they operate in an open world, which requires context awareness. In this paper, we introduce a novel approach for goal-oriented software acceptance testing. It specifies a testing process that complements the goal oriented methodology Tropos and strengthens the mutual relationship between goal analysis and testing. Furthermore, it defines a structured and comprehensive acceptance testing process for engineering software agents by providing a systematic way of deriving test cases from goal analysis.
Structured integration test suite generation process for multi-agent system
Published in: Journal of Computer Science
May 01, 2011
Problem statement: In recent years, Agent-Oriented Software Engineering (AOSE) methodologies are proposed to develop complex distributed systems based upon the agent paradigm. The implementation for such systems has usually the form of Multi-Agent Systems (MAS). Testing of MAS is a challenging task because these systems are often programmed to be autonomous and deliberative and they operate in an open world, which requires context awareness. Approach: We introduce a novel approach for goal-oriented software integration testing. It specifies an integration testing process that complements the goal oriented methodology Tropos and strengthens the mutual relationship between goal analysis and testing. Results: The derived test suites from the system goals can be used to observe emergent properties resulting from agent interactions and make sure that a group of agents and contextual resources work correctly together. Conclusion: This approach defines a structured and comprehensive integration test suite derivation process for engineering software agents by providing a systematic way of deriving test cases from goal analysis.
Structured system test suite generation process for multi-agent system
Published in: International Journal on Computer Science and Engineering
Apr 01, 2011
In recent years, Agent-Oriented Software Engineering (AOSE) methodologies are proposed to develop complex distributed systems based upon the agent paradigm. The implementation for such systems has usually the form of Multi-Agent Systems (MAS). MAS’testing is a challenging task because these systems are often programmed to be autonomous and deliberative, and they operate in an open world, which requires context awareness. In this paper, we introduce a novel approach for goal-oriented software system testing. It specifies a testing process that complements the goal oriented methodology Tropos and reinforces the mutual relationship between goal analysis and testing. Furthermore, it defines a structured and comprehensive system test suite derivation process for engineering software agents by providing a systematic way of deriving test cases from goal analysis.
From graphical user interface to domain class diagram: a reverse engineering approach
Published in: Journal of Theoretical & Applied Information Technology
Feb 15, 2011
Abstract The Graphical User Interfaces (GUIs) of software products are extensively used by researchers and practitioners in Software Engineering field. For Example, they are used for testing, measuring usability, and many other purposes. This paper describes a new reverse engineering approach to transform the GUI into class diagram. However, the correctness of such transformation process is essential for the corrected execution of the overall software. To assure this correctness, the interpreted Petri nets models will be implemented on the proposed transformation processes (ie capturing, normalization, and translation processes).
Fault detection and isolation in dynamic systems using statistical local approach and hybrid least squares algorithm
Published in: American Journal of Applied Sciences
Dec 01, 2007
A fault detection and isolation (FDI) scheme for dynamic system proposed. This study deals with the design of discrete-time linear system using delta operator approach and the hybrid least squares (HLS) algorithm. A third residual generation based on statistical local approach and the derivative of the normalized residual on a small temporal window investigated. This new technique meets the desired FDI performance specifications by increasing the faults magnitude and decreasing the noise effects. Some simulation results were provided to evaluate the design.
Fault detection and isolation using hybrid parameter estimation and fuzzy logic residual evaluation
Published in: Informatica
Feb 11, 2002
Fault diagnosis has become an issue of primary importance in modern process automation as it provides the prerequisites for the task of fault detection. The ability to detect the faults is essential to improve reliability and security of a complex control system. When a physical parameter change due to failure has occurred in a system, the failure effect will hardly be visible in the output performance. Since the failure, effect is reflected as a change in the predictor model. In this paper we describe a completed feasibility study demonstrating the merit of employing hybrid parameter-estimation and fuzzy logic for fault diagnosis. In this scheme, the residual generation is obtained from input-output data process, and identification technique based on ARX model, and the residual evaluation is based on fuzzy logic adaptive threshold method. The proposed fault detection and isolation tool has been tested on a magnetic levitation vehicle system.